skip to content

The computational physics group of Prof. Trebst studies collective phenomena in quantum many-body systems that arise from the intricate interplay of topology, strong correlations, and spin-orbit coupling. The work of his group typically complements analytical approaches by a variety of sophisticated numerical techniques that exploit concepts from statistical physics, quantum information theory, and computer science. Recent themes include the theoretical classification of topological phenomena in frustrated quantum magnets, the numerical analysis of competing orders in quantum critical metals, and the application of machine learning techniques to the many-fermion problem.

Dr. Trebst is vice-speaker of the CRC 1238 “Control and Dynamics of Quantum Materials” at the University of Cologne, a member of the Proposal Review Committee for the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, a member of the Peer Review Board, John von Neumann Institute for Computing at the Forschungszentrum Jülich, and representative of the German Physical Society (DPG) in the International Federation for Information Processing (IFIP).

Before joining the Institute for Theoretical Physics in 2012, Dr. Trebst spent six years at Microsoft Research Station Q in Santa Barbara where he explored the theoretical foundations of a topological quantum computer. More research details can be found at:

Numerically exact phase diagram of competing orders in a quantum critical metal.

Selected publications

  1. Finn Lasse Buessen, Max Hering, Johannes Reuther, and Simon Trebst
    Quantum Spin Liquids in Frustrated Spin-1 Diamond Antiferromagnets
    Phys. Rev. Lett. 120, 057201 (2018).
  2. Finn Lasse Buessen, Dietrich Roscher, Sebastian Diehl, and Simon Trebst
    Functional renormalization group approach to SU(N) Heisenberg models: Real-space RG at arbitrary N
    Phys. Rev. B 97, 064415 (2018).
  3. Peter Broecker, Juan Carrasquilla, Roger G. Melko, and Simon Trebst
    Machine learning quantum phases of matter beyond the fermion sign problem

    Scientific Reports 7, 8823 (2017).
  4. Max H. Gerlach, Yoni Schattner, Erez Berg, and Simon Trebst
    Quantum critical properties of a metallic spin density wave transition
    Phys. Rev. B 95, 035124 (2017).
  5. Yoni Schattner, Max H. Gerlach, Simon Trebst, and Erez Berg
    Competing Orders in a Nearly Antiferromagnetic Metal

    Phys. Rev. Lett. 117, 097002 (2016).
  6. Maria Hermanns, Kevin O' Brien, and Simon Trebst
    Weyl spin liquids
    Phys. Rev. Lett. 114, 157202 (2015).
  7. B. Bauer, L. Cincio, B. Keller, M. Dolfi, G. Vidal, S. Trebst, and A. Ludwig
    Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator
    Nature Comm. 5, 5137 (2014).
  8. Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W. Ku, S. Trebst, and P. Gegenwart
    Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3
    Phys. Rev. Lett. 108, 127203 (2012).
  9. C. Gils, S. Trebst, A. Kitaev, A. Ludwig, M. Troyer, and Z. Wang Topology driven quantum phase transitions in time-reversal invariant anyonic quantum liquids
    Nature Physics 5, 834 (2009).
  10. Doron Bergman, Jason Alicea, Emanuel Gull, Simon Trebst, and Leon Balents
    Order by disorder and spiral spin liquid in frustrated diamond lattice antiferromagnets
    Nature Physics 3, 487 (2007).