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Deep neural networks are a powerful machine learning tool with the capacity to “learn” complex
nonlinear relationships described by large data sets. Despite their success, training these models
remains sensitive to parameters and is a computationally intensive undertaking. In this talk we will
present two separate advances designed to tackle these challenges. In both cases, the approaches
developed are based on numerical techniques that have been developed in the scientific computing
community. Adapting these approaches to neural networks has yielded improvements both in the
training methodology and in the technologies used to produce these improvements.

The first advance is a new layer-parallel training algorithm that exploits a multigrid scheme to
accelerate both forward and backward propagation. Introducing a parallel decomposition between
layers requires inexact propagation of the neural network. The multigrid method used in this approach
stitches these subdomains together with sufficient accuracy to ensure rapid convergence to the same
solution as the serial algorithm. We demonstrate an order of magnitude wall-clock speedup over
the serial approach, opening a new avenue for scalable parallelism that is complementary to existing
approaches. Results for this talk can be found in [1].

The second advance is motivated by taking an adaptive basis viewpoint of deep neural net-
works [2, 3, 4, 5]. This perspective leads to novel initializations and a hybrid least squares/gradient
descent optimizer. We provide analysis of these techniques, and illustrate via numerical examples
dramatic increases in accuracy and convergence rate for benchmarks characterizing applications of
DNNs, including regression problems and physics-informed neural networks for the solution of partial
differential equations.
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