skip to content

Approximation Algorithms for Geometric Data Analysis and Their Practicability (Emmy Noether Group)

CDS members associated with the project: Jun.-Prof. Dr. Melanie Schmidt

Geometric data analysis is an emerging field on the intersection of computational geometry and machine learning that is concerned with the analysis of data that has geometric properties. Algorithmic data analysis is a term that is being established for designing methods for data analysis by using techniques from the areas of algorithms, theory or algorithm engineering. In this project we are interested in algorithmic geometric data analysis, or, more precisely, in approximation algorithms for geometric data analysis tasks. The focus is on finding algorithms with provable performance guarantees, and on translating them into methods that are practically efficient from the view point of algorithm engineering.

Data analysis tasks are often very difficult to solve, involve side constraints or have a complicated combinatorial structure. Approximation algorithms run in polynomial time and provide a provable bound on the worst quality produced. They are particularly interesting for solving data analysis tasks in practice if they are also practically efficient and provide high quality results (often much better than their theoretical guarantee). The area of practical approximation algorithms for data analysis tasks has gained a lot of popularity lately. We will pursue this approach for different geometric data analysis tasks with a focus on clustering and in particular k-means.